老鼠走迷宮 Mouse Maze

這是資料結構第三次作業。
本篇老鼠走迷宮會大致上分成:「生成迷宮」與「解出迷宮」兩個部分。

建立迷宮

老鼠走迷宮畢竟是一個經典問題,當然對於迷宮生成也是,
所以已經有許多很棒的網路資源可以參考了。

我覺得很棒的 參考資料

本文改寫前使用碎形結構建立迷宮。

那接下來,我就不重複裡面的內容,畢竟重複就沒有太大的意義。
我會依照我原先的想法來製作迷宮。

好的迷宮是又亂又複雜的,所以直觀的想法是:使用亂數。

參考室內結構來說,梁柱、牆板之類的部分是必要的;
我想迷宮也一樣,而且我們最好有一條路徑可以找到出口。

對於亂數生成的做法來講,以下提供基本操作的想法:

  • 產生入口
  • 產生出口
  • 格子狀佈滿柱子
  • 柱子間隨機方向延伸 1 格成為牆板,或不延伸
  • 輸出迷宮

好的迷宮有哪些特徵呢?

演示

演示提供三個參數可以調整。

我增加了柱子間連接的機率,也就是說,即使選取了A、B兩個柱子。
也要剛好機會符合才相接牆面,間接降低了圖形的密度。

迷宮解法

本段需有堆疊與佇列的先備知識;請參閱 堆疊與佇列 Stack and Queue

其實在之前 ITSA 中就有這樣的題目,
當時是採用複製地圖副本且標記的作法來解,也順利解出來了。
其實是同一類的做法,只差在這邊多了一種資料結構來控制與調整。

有趣的是,如果直接在地圖上記錄哪裡走過,
最後輸出路徑還是需要掃描一次地圖。

下面是解法的粗略步驟:

  1. 堆疊初始化(存入第一步)
  2. 根據堆疊內的資料走出下一步
  3. 走出下一步時將資料存入堆疊
  4. 重複 2 ~ 3 步驟,直到堆疊為空或到達出口
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
...
// 給予第一步
stack.push((0, 0));
// 尚有路徑沒試
while(!stack.empty())
{
// 走回頭路
obj step = stack.pop();
x = step.x;
y = step.y;
dir = step.dir;
...
// 嘗試每個方向
while(dir)
{
// 下一步的位置
u = x + dx;
v = y + dy;
// 下一步可以通行
if(map[u][v].through())
{
// 把這步塞進堆疊
stack.push((x, y));
// 移動到下一步
x = u;
y = v;
// 發現這步正是終點
if(map[x][y].end?())
outputResult();
//方向重置
dir.initialize();
}
}
}
// 所有路徑都已經嘗試
// 但沒有走到終點,代表無解
noResult();
...

這邊巧妙的利用方向重置來找路,並僅使用一行掉頭找其他路徑。

迷宮的布局、嘗試方向的順序,皆會影響解出迷宮的時間。

演示

0%